

E-Class Infrared Burners

6-inch gas impingement type burners generate intense, concentrated radiation. They are typically used in industrial applications (curing coatings on steel) and food applications (baking).

Applications:

- Curing coatings on steel
- Baking

How It Works

Selas E-Class Infrared burners are impingement type infra-red generators incorporating shaped refractory blocks. Rows of small ports direct flame against the curved block surfaces, heating them to temperatures ranging from $1800^{\circ} \mathrm{F}$ to 2200°. Infrared
burners produce a high intensity, concentrated radiation. In addition, the curvature of the refractory directs a hot, turbulent stream of exhaust gases toward the product, scrubbing the surface of vapor films and enhancing heat transfer.

Operating Principles

Selas E-Class 64IR and 67IR burners produce a concentrated stream of exhaust gases. When they are mounted facing down, the exhaust will travel from 10 " to $12^{\prime \prime}$ before losing momentum and rising. They can be operated with a turndown of 10:1. Radiant output drops in proportion to decreasing gas input. Infrared burners may be ignited by direct spark or by a spark-ignited blast type pilot. Flame monitoring may be by flame rod or U.V.scanner.

Performance

- 67IR - 60,000 Btu/section at 8" w.c. mixture pressure
- 64IR - 30,000 Btu/section at 8" w.c. mixture pressure
- Develops high radiant temperatures to $2200^{\circ} \mathrm{F}$
- Strong forward velocity convection heat produced along with high intensity infrared

Features

Turndown of 10:1
Available in single (64IR) or dual (67IR) profiles
May be mounted facing up or down

Strong forward velocity heat

Optimum combination for certain applications

Curvature concentrates exhaust stream.

Dimensions

Pipe	Maximum Number of Sections		Dimensions In Inches		Weight Per Section, Lbs.	
	$\mathbf{6 4}$ IR	$\mathbf{6 7}$ IR	\mathbf{A}	\mathbf{B}	$\mathbf{6 4}$ IR	$\mathbf{6 7}$ IR
$1-1 / 2$	10	5	$7-5 / 8$	$15 / 16$	8	12
2	20	12	9	$1-3 / 16$	9	$12-1 / 2$
$2-1 / 2$	22	14	$9-5 / 8$	$1-7 / 16$	$10-1 / 2$	$13-1 / 2$
3	40	26	$10-3 / 16$	$1-3 / 4$	$11-1 / 2$	$14-1 / 2$
4	82	42	$11-3 / 16$	$2-1 / 4$	13	16
6	100	90	$13-3 / 8$	$3-5 / 16$	17	20

Benefits

Excellent thermal process control

Allows wide process flexibility

Effective heating regardless of direction

Enhances heat transfer

Perfect for steel coatings and baking

